Crosslinked PEG and PEBAX Membranes for Concurrent Permeation of Water and Carbon Dioxide

نویسندگان

  • Colin A. Scholes
  • George Q. Chen
  • Hiep T. Lu
  • Sandra E. Kentish
چکیده

Membrane technology can be used for both post combustion carbon dioxide capture and acidic gas sweetening and dehydration of natural gas. These processes are especially suited for polymeric membranes with polyether functionality, because of the high affinity of this species for both H₂O and CO₂. Here, both crosslinked polyethylene glycol diacrylate and a polyether-polyamide block copolymer (PEBAX 2533(©)) are studied for their ability to separate CO₂ from CH₄ and N₂ under single and mixed gas conditions, for both dry and wet feeds, as well as when 500 ppm H₂S is present. The solubility of gases within these polymers is shown to be better correlated with the Lennard Jones well depth than with critical temperature. Under dry mixed gas conditions, CO₂ permeability is reduced compared to the single gas measurement because of competitive sorption from CH₄ or N₂. However, selectivity for CO₂ is retained in both polymers. The presence of water in the feed is observed to swell the PEG membrane resulting in a significant increase in CO₂ permeability relative to the dry gas scenario. Importantly, the selectivity is again retained under wet feed gas conditions. The presence of H₂S is observed to only slightly reduce CO₂ permeability through both membranes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Synthesis and Implementation of Pebax/PEG 400/NH2-MIL125 Nanocomposite Membranes to Separate CO2/CH4

In the present study, the permeabilities of CO2 and CH4 in terms of ideal and actual CO2/CH4 selectivity were investigated through the synthesized membranes of poly (ether-block-amide) (Pebax 1657) accompanied with poly (ethylene glycol) (PEG 400) and NH2-MIL125 nanoparticles. NH2-MIL125 nanofillers were added to the blend of PEG...

متن کامل

Nano composite PEBAX®/PEG membranes: Effect of MWNT filler on CO2/CH4 separation

The performances of two-phase polymer-liquid PEBAX®/polyethylene glycol (PEG) and three-phase polymer-liquid-solid PEBAX®/PEG/MWNT thin film composite membranes for CO2 and CH4 permeation were studied. The effect of temperature and MWNT/PEBAX® ratio on single gas (CO2 and CH4) permeability was investigated. The permeat...

متن کامل

Nano composite PEBAX®/PEG membranes: Effect of MWNT filler on CO2/CH4 separation

The performances of two-phase polymer-liquid PEBAX®/polyethylene glycol (PEG) and three-phase polymer-liquid-solid PEBAX®/PEG/MWNT thin film composite membranes for CO2 and CH4 permeation were studied. The effect of temperature and MWNT/PEBAX® ratio on single gas (CO2 and CH4) permeability was investigated. The permeat...

متن کامل

Fabrication and Characterization of Polyetherimide Hollow Fiber Membrane Contactor for Carbon Dioxide Stripping from Monoethanolamine Solution

In this research, process asymmetric polyetherimide hollow fiber membranes using ethanol (0, 2 and 4 wt%) as non-solvent additive in the polymer dope via phase inversion method were fabricated. Aqueous solution of 1-methyl-2-pyrrolidine (NMP) (90%) was applied as a bore fluid to avoid inner skin layer formation and water was used as the external coagulant. The morphology of fabricated membranes...

متن کامل

Nano composite PEBAX® membranes: Effect of zeolite X filler on CO2 permeation

A PEBAX-nano zeolite X mixed matrix membrane was fabricated and operationally characterized using single gas (CO2) permeation. X-ray diffraction (XRD) analysis was used to study the arrangement of polymer chains of mixed matrix membrane. The membranes were characterized by scanning electron microscopy (SEM) to study cross-sectional morphology. The single gas permeability were carried...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015